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Abstract: We extend the treatment of symmetry as a continuous molecular structural property (7. Am. Chem. Soc. 
1993, 775, 8278) to chirality. Rather than labeling objects as being either chiral or achiral, we provide an exact 
quantitative measure of this property, which allows one to distinguish (chiral) molecules from each other by their 
degree of shape chirality. The continuous scale is based on the minimal distances that the vertices of a shape must 
move in order to attain the nearest achiral symmetry point group (in most cases, Cj, reflection symmetry). A detailed 
description of the methodology and the practical implementation of the continuous chirality measure (CCM) are 
given. Its generality and versatility are then demonstrated on a wide variety of chirality related issues and in various 
chirality measurements. These include the identification of the most chiral objects (the most chiral ethane rotamer, 
the most chiral tetrahedron, etc.), the chirality evaluation of equicontour representations of molecular orbitals, the 
calculation of the continuous changes in chirality along racemization pathways (including an all-chiral racemization 
pathway), the evaluation of chirality of structures with uncertain point locations, the extension of the CCM to 
diastereomerism (with a comment on prochirality and other stereochemical identifiers), the measurement of the chirality 
of various phosphates, a fullerene, helicenes, a knot, a Mobius strip, a catenane, and a large random object (a diffusion-
limited aggregate), and the calculation of dynamic continuous changes in chirality during fluxional (Walden-type) 
inversion and in rotating ethane (with a comment on continuous chirality changes along concerted reaction pathways). 

Thema: The vast majority of molecules are chiral, not 
achiral; to realize it, one only needs a sufficiently fine spatial 
or temporal resolution of measurement. 

1. Background 

In a recent citation analysis,1 the dominance of chirality as a 
central stream in modern chemistry seems more solid than ever. 
This paper is devoted to the quantitative evaluation of geometric 
chirality as a continuous property of molecular structure. 

In previous parts,2-4 we advanced the notion of treating 
symmetry as a continuous rather than a descrete structural 
property. Our main argument has been that the static and 
dynamic structures of the 10 million known molecules are so 
rich and diverse that much is lost by allowing the assignment 
of a point-symmetry group to only a small fraction of these 
molecules and by trying to define correlations between sym­
metry and various molecular properties only in some strict 
limited cases. We have proposed that a more natural approach 
to symmetry issues would be to allow for gradual scaling of 
this structural property. We have developed this proposition 
into a working tool which allows one to evaluate quantitatively, 
on a continuous scale, how much of any symmetry element or 
symmetry group exists in any configuration in any dimension. 
This tool also allows one to identify the symmetry which is 
nearest to the given configuration, and it allows one to obtain 
the nearest object with any desired symmetry—all these without 
reference to a specific ideal shape, only to a specific symmetry. 
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The essence of our approach is the general definition of the 
continuous symmetry measure (CSM) as 

S'(G) = - XlIP1 -P1H2 (1) 
« i = i 

where G is a given symmetry group, Pj are the points of the 
original configuration, P1 are the corresponding points in the 
nearest G-symmetric configuration, and n is the total number 
of the configuration points. The meaning of eq 1 is the 
following: find a set of points 7\ which possesses the desired 
symmetry (G symmetry), such that the total (normalized) 
distance from the original shape Px is minimal. S' is bounded 
between 0 (the object has the desired symmetry) and 1. For 
convenience, the expanded scale is 

S = 100S' (2) 

Equation 1 defines a metric on the space of all sets of n points 
satisfying the requirements of being positive and commutative 
and fulfilling the triangle inequality. The main practical 
problem, then, is how to find the set of P1 which would lead to 
a minimal S(G) value. In part I2 we solved this problem for 
symmetry elements, then generalized it in part 23 to any 
symmetry group in any dimension, and extended the approach 
to contours (orbitals) and to uncertain structural data (e.g., X-ray 
data) in part 3.4 The algorithm (the "folding/unfolding" method) 
is general and easy to implement. It is redescribed below in 
the context of the chirality problem treated in this report. We 
have provided rigorous mathematical proofs3 that the method 
indeed provides the minimal solution for eq 1. 

A natural outcome of our general approach to symmetry is 
that S serves also as a continuous measure of chirality: since 
chirality is defined as a lack of certain symmetries (the improper 
elements),5 and since the CSM method allows one to evaluate 
how much of any of these symmetries is lacking in a given 
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chiral configuration, one has to screen over all GacMrai's to find 
the one that provides the minimal distance to achirality. For a 
given set of structures, the one with the largest S(Gachirai) value 
is the most distant from having an improper symmetry element 
and hence the most chiral, and vice versa, as S(Gachiiai) 
approaches zero, the structure under study is minimally or 
negligibly chiral. In practice, since the minimal requirement 
for an object to be achiral is that it posseses either a reflection 
mirror (a = Si), an inversion center (i = S2), or a higher order 
improper rotation axes Sin, one has to screen S over the 
symmetry groups having these elements. In the majority of 
cases, one finds (below) that the continuous chirality measure 
is simply S(a), i.e. the distance of a chiral object from having 
a reflection mirror. In section 2 we show how to find the 
minimal S(Gachirai)-

It is in order to emphasize here that, at the moment, we are 
interested in chirality as a geometric property, of either a 
collection of nuclear coordinates or equicontours of any 
molecular property; we return to this point in section 3.2. 

It is interesting to note that chirality as a special case, and 
not symmetry which is the general encompassing property, 
attracted most of the attempts to design a scale. This, we 
believe, is a manifestation of the central role of the former in 
the very phenomenon of life and of the consequent major place 
that assymmetric synthesis1 has occupied in chemistry over the 
years.6 Next, then, we briefly list previous propositions for the 
quantitative evaluation of geometric chirality. 

Perhaps the most successful attempt has been the chain of 
papers of Kitaigorodskii,7 Gilat,8 Meyer and Richards,9 and Seri-
Levi and Richards,10 which started with a raw idea by the first 
and ended with correlations between chirality and chemical 
properties of real molecules identified by the last. The idea 
here is that, when left and right enantiomers are maximally 
overlapped, then the normalized nonoverlapping volume is a 
measure of molecular dissimilarity and hence also of chirality.7'8 

Gilat indicated the difficulty of performing this calculation,8 

but then Meyer et al. devised a simple algorithm for an optimal 
overlap,9 and good correlations between this measure and the 
pharmacological Pfeiffer rule11 were shown for various drug 
molecules10 (it should be noted that the overlapping procedure 
suggested in refs 9 and 10 is optimal for the specific appli­
cations indicated there but not necessarily maximal). The 
overlapping idea was adapted by several other groups, e.g. by 
Buda et al., for the analysis of the chirality of triangles.12 Also 
on the basis of the overlapping concept, Kuzmin et al. designed 
disymmetry functions13 for the evaluation of the difference 
between two enantiomers using the tensor of inertia as a 
descriptor. 
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Another approach which gained much activity is that of 
"chirality functions" developed especially by Kauzmann et al.,14 

Ugi,15 Ruch,16 and King.17 The basic idea here16 has been the 
attachment of ligands to an achiral skeleton, assigning ligand-
specific parameters for each such attachment. Derflinger 
reviewed this approach recently,18 detailing both its achieve­
ments and its difficulties. We note here that our approach allows 
both the analysis of subsets of vertices (i.e., various ligands) 
and the analysis of the full configuration as a whole. 

Mezey et al. have contributed to the understanding of the 
problem of chirality measures by applying a number of different 
approaches. One is based on the principle of energy-weighted 
fuzzy achirality resemblance,19 which was based on the syntopy 
model of Mezey and Maruani.20 The other applies the principle 
of resolution-based similarity measures tailored to mimic visual 
perception of this property.21 

Rassat introduced the evaluation of the smallest Haussdorf 
distance between chiral objects as a chirality measure,22 and 
his approach was applied by Buda et al. for the tetrahedron.23 

An important source of discussion of chirality issues is 
Sokolov's book which became available to Western countries 
recently.6 Of particular relevance here is his original algebraic 
analysis of chiral sets.624 Other important contributions to the 
field of chirality measures are due to Chauvin,25 who introduced 
a pairing constant of equilibria between enantiomers as an index 
of topographical chirality for skeletal analogs with different 
ligands; to Walba26 and Flapan,27 who introduced a hierarchical 
topological classification of chirality; to Harary and Mezey, who 
introduced the concept of the degree of Jordan curves,2128 to 
Zimpel,29 who discussed topological vs metric descriptors of 
chirality (c.f. also Mezey's discussion of this topic30); and to 
Luzanov et al.,31 who developed a quantitative measure of 
molecular dissimilarity based on a quantum-mechanical ap­
proach. 

Chirality measures were also developed in subatomic physics. 
Thus Donoghue et al. used chiral Lagrangians to provide a 
measure of chirality of the strong atomic interactions as 
manifested in kaon decays.32 

Finally, we mention earlier propositions of chirality scales 
made by our research group. One approach was based on a 
rotational dynamic property of chiral objects:33 If an achiral 
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object is rotated in a viscous medium, then the force exerted 
on the object upon clockwise rotation is exactly the same (except 
for sign) as the force exerted upon counterclockwise rotation. 
Yet, simple chiral objects will be rotated with greater ease in 
one direction than in the opposite direction. The difference 
between left and right rotations is then used as a measure of 
the degree of chirality. In another attempt, we suggested the 
use of the shape distortion exerted in a reference molecule upon 
substitution.34 Despite the fact that shape distortion can preserve 
achirality (which is a weakness of that approach), it succeeded 
in a modefied form to correlate nicely a shape distortion 
parameter of chiral halogenated alkanes with their optical 
molecular rotations.35 

The approach and method we report here are different in 
many aspects from previously suggested chirality scales (includ­
ing our own earlier studies) by offering the following advan­
tages: 

(A) The chirality measure is an integral part of a most general 
metiiod of measuring the symmetry content of any configuration 
in any dimension toward any symmetry group. Thus, a full 
profile of the symmetry properties of a molecule can be given, 
including its chirality. 

(B) The method, as will be seen below, is easily applied to 
virtually all sorts of known chiral structures: distorted tetrahedra, 
helicenes, fullerenes, frozen rotamers, knots, equiproperty 
contours, chiral reaction coordinates, and so on. 

(C) Chirality is measured without making reference to an ideal 
specific shape; the reference is only to the nearest a or Ŝ n-
Thus, the chirality of completely different structures can be 
compared. 

(D) The shape of the nearest achiral object is obtained, and 
the method is capable of selecting whether it is a, i, or any 
other S2n-

(E) The scale is well behaved from the point of view that its 
values can change continuously within the bounds of zero 
(achiral objects) and one. 

2. Continuous Chirality Measure (CCM) 

2.1. General Definition and Approach. We define the 
continuous chirality measure (CCM) as follows: given a 
configuration of points [P1]"^, its chirality content is deter­
mined by finding the nearest configuration of points [P1]I=I 
which has an improper element of symmetry and by calculating 
the distance between the two sets, using eq 1. The S'(Gachirai) 
thus obtained is the minimal chirality measure of the given 
configuration, on a continuous scale of 0 < S' < 1 or 0 < S < 
100. 

As mentioned in section 1, following this general definition, 
one has to devise a tool for locating the set of Pi's. Such a 
tool, termed the folding/unfolding procedure, was developed 
for the general case of continuous symmetry3 and is based on 
the very method of constructing a symmetric object. This was 
described in great detail in ref 3; here, we summarize it using 
the case of mirror symmetry, a: 

Suppose we wish to construct a configuration which is 
symmetric with respect to the mirror-symmetry group [E, o] 
from a given point, Pi, and a given reflection axis a, as shown 
in Figure la. Unless the point is on the reflection axis, the 
minimal number of points needed to obtain a configuration 
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30, 587. 
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mirror axis 

Figure 1. Unfolding and folding of a pair of points, (a) Given a single 
point, one treats it as a coinciding cluster of two points Pi and Pt. (b) 
Unfolding the pair of points by applying the identity transformation to 
P\ and reflecting Pt across the mirror plane, a mirror-symmetric pair 
of points, P1 and Pt, is obtained, (c) Non-mirror-symmetric pair of 
points, (d) Folding the pair of points shown in c results in a 
noncoinciding cluster of two points, P1, P%. (e) Noncoinciding cluster 
averaged to Px and (f) unfolded to a mirror-symmetric pair P1, Pi. 

having the required symmetry is two (the number of elements 
in the symmetry group). Let us therefore treat the given point 
as a coinciding cluster of two points Pi and P2 (Figure la). To 
obtain a a-symmetric configuration, we unfold the cluster by 
applying E on Pi (being the identity element, E leaves Pi in 
place, i.e. Pi = P1) and by applying a on P2, obtaining the 
reflected point P2 (Figure lb). A mirror-symmetric configura­
tion has been unfolded from the given point. The symmetric 
points can undergo a reversed procedure and can be folded into 
a cluster of two coinciding points {Pi, P2}. This is achieved 
by applying the inverse operation a - 1 on P2 and E~l on Pi. 
Notice that, whereas folding of two mirror-symmetric points 
results in a coinciding pair of points, the folding of two 
nonsymmetric points (Figure Ic) results in a noncoinciding 
cluster where some distance exists between the two folded points 
(Figure Id). If the mirror axis is not predetermined, then the 
minimization of this distance through the search of an optimal 
mirror alignment is the key step in the evaluation of the minimal 
S(a). Once this minimum is found, the coordinates of the folded 
points are averaged to obtain the coordinates of a single average 
point Pi (Figure Ie) and the average point is then unfolded into 
a a-symmetric configuration (Figure If). 

Most objects of interest have, however, more than two points, 
and since in a cr-symmetric object each point on one side of 
the mirror axis or plane has a counterpart on the opposite side, 
the other essential step in the process is to divide the points 
into pairs, each of which is to be symmetrized around a chosen 
mirror axis or rriirror plane. For instance, the four nonsymmetric 
points in Figure 2a can be divided into pairs such as {Pi, P2}, 
[Pi, P4} or {Pi, P3}, {P2, P4}, etc. It is possible, however, for 
a point in a <7-symmetric object to have no counterpoint, 
whenever that point lies on the mirror axis. Therefore, the 
division of points must allow for sets of pairs and sets of single 
points. For instance, the four points in Figure 2a can also be 
divided into sets {Pi, P3}, {P2}, and [PA]. In the symmetrized 
object, P2 and P4 must fall on the mirror axis, whereas Pi and 
P3 will be reflections of each other. In this stage of the 
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mirror axis 
P. 

C. d. 
Figure 2. Closest mirror symmetric set of points obtained by using the folding/unfolding method, (a) Original configuration of points Pi P4. 
The points are divided into sets {Pi, P3}, {P2, Pi) and {P4, P4}. (b) Each pair of points is folded by applying the identity transformation to one 
point and by reflecting the other point across the mirror plane. The folded points {Pi} are obtained, (c) Each pair of folded points {P„ P1) is 
averaged to obtain a single averaged point P,. (d) Each average point P, is unfolded by reflecting back across the mirror plane to obtain the point 
Pj. The points {P,}^ are mirror symmetric. 

procedure, all possible divisions into sets must be found. This 
is a topological problem, the solution of which is detailed in 
section 2.3. 

Having explained the two key steps, the topological step and 
the folding/unfolding, we proceed next to show how these steps 
are practiced in the full procedure. 

2.2. CCM of a Set of Points in 2D with Respect to 
Reflection. We demonstrate the evaluation of the chirality 
content on a set of points (Figure 2a) in 2D, with respect to 
reflection. The following steps are carried out: 

1. Normalization of the Nonsymmetric Configuration: (a) 
Determine the centroid of the configuration of points. This is 
done by averaging the coordinates of the set of points, (b) 
Translate the object so that its centroid coincides with the origin, 
(c) Scale the configuration so that the maximum distance 
between the centroid and the farthest point is one.36 

2. Select a Symmetry Group and translate it so that all its 
operations pass through the origin. In our example the relevant 
groups contain only two elements: the identity (E) and a. Thus, 
the reflection plane (line in 2D) should pass through the origin. 

3. Select a Reflection Plane or line (passing through the 
origin) from among all possible alignments of this element. 

4. Select a Division of the points into sets of pairs and single 
points (the topological step, section 2.3). If a set contains one 
point, duplicate that point. One possible division, used in the 
example of Figure 2, is [P1, P3}, [P2, P2], and [P4, P4). 

5. Fold each set of points [Pt, Pj) by applying the identity 
transformation to one point Pt and by reflecting the other point 
Pj across the mirror plane. The folded points [Pj, Pj) are 
obtained (Figure 2b). Applying E and 0 on [P2, P2} results in 
an unchanged P2 and in a reflected P2. [P4, P4) is folded 
similarly. The pair {Pi, P3} is folded by applying E on P\ and 
0 on PT,: P\ remains in place (Pi = Pi) and a reflected P3 is 
obtained. (The order of operations in this case is not important. 
This, however, is not the case for other symmetry groups, such 
as S2n, having more than two elements.3) 

6. Average each pair of folded points {P„ Pj) to obtain a 
single averaged point Pj for each pair (Figure 2c). In our 
example, by averaging the pair [P2, P2), point P2 is obtained, 
and by averaging [P4, P4), point P4 is obtained. Note that both 
of these averaged points must lie on the reflection line a, by 
definition. The pair {Pi, P3) averages to Pi. 

7. Unfold each averaged point P, by reflecting back across 
the mirror plane to obtain the point P1 (Figure 2d). If the original 
set [Pu Pj) consists of a single duplicated point, then the two 
unfolded points P, and P, are at the same location and are 

(36) Other normalization and scaling procedures are possible. These will 
be compared elsewhere. 

considered as a single point P, (Figure 2d). The points 
{P,}"=1 are mirror symmetric. 

8. Calculate S(G0) according to eqs 1 and 2. 
9. Minimize the chirality value obtained in step 8 by 

repeating steps 3-7 with all possible divisions of points into 
sets and for all possible reflection planes. In practice, the 
minimization is greatly simplified: in 2D, the optimal axis of 
reflection is found analytically (Appendix A.3 in ref 3), and in 
3D, we use a closed form solution which replaces steps 5—7 
and is detailed in section 2.4. The division of points into sets 
is also greatly simplified when the configuration of points is 
connected (as is usually the case in chemistry; see section 2.3). 

Rigorous mathematical proof that the procedure outlined here 
indeed provides the minimal S value was detailed in ref 3. The 
procedure outlined here is applicable to 3D as well (sections 3 
and 4). The procedure for symmetry groups having improper 
axes of rotation (including inversion) is similar and is outlined 
in section 2.5. 

2.3. Further Comments on the Division of Points into 
Sets: The Topological Stage. As described above, this stage 
corresponds to dividing the points in the given configuration 
into sets, so that for every possible division into sets one finds 
the closest achiral configuration. Although the coordinates of 
the points in the set change upon symmetrization, we impose 
that all other features and characteristics associated with the 
points (connectivity, mass, atomic number, etc.) remain invariant 
under this transformation. Therefore, the connectivity of the 
points in the original configuration, namely, the topology of 
the configuration, determines the division of points into sets. 
We concentrate in this section on connectivity and comment 
on other physical features in section 3.2. 

As an example, let us analyze the "2D branched alkane" 
skeleton shown in Figure 3a.26'33 Points Pi,..., P7 are leaf nodes 
and can be paired between them. Points P$, ..., Pw have the 
same valency (the number of edges converging at a point) of 
three and can be paired. Points Pn and P12 stand alone in their 
valency of 4 and 2, respectively, and will form single-point pairs 
(degenerate pairs). Thus a possible division of the points into 
pairs for measuring mirror symmetry and for transforming the 
configuration into a mirror-symmetric configuration is as 
follows: [P2, P5), [P3, P4), [Ps, P9), [Pi), [Pn), [Pio), [P6, 
Pi), [Pn)- However, the valency of a point is insufficient for 
determining the division into sets. Consider for example points 
PB and Pio which have the same valency (3) but obviously 
cannot be geometrically moved to be mirror symmetric because 
they are not equivalent in their second-order connectivity (i.e., 
in the valency of their neighboring points): point P$ has two 
neighbors of valency 1 and one neighbor of valency 4, whereas 
point Pio has two neighbors of valency 1 and one neighbor of 
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Figure 3. Connected configurations of points. The graph shown in a 
is isomorphic to the graph shown in b (see text). 

valency 2. This reasoning does not stop at the second-order 
connectivity (in Figure 3 a points P4 and Pe do not agree in their 
third-order connectivity) but must be taken to the maximal 
connectivity of the configuration (which is equal to the width 
of the graph). 

Thus, the topological stage of evaluating the chirality measure 
of a connected configuration of points lists all possible divisions 
of the points into pairs by taking into account only the topology 
(the connectivity of the points). When considering a configura­
tion of points as a graph,37 the problem of dividing the points 
into pairs (proper and degenerate pairs) reduces to the classical 
question of listing all graph isomorphisms of order 2.38 A graph 
isomorphism is a permutation TI of the graph vertices which 
leaves the graph topologically equivalent; i.e., given a graph 
composed of the set of vertices V and the set of edges E, &= 
{V, E}, replacing each vertex i € V with its permutated vertex 
11(0 results in a graph ff = (V, E'} such that the set of edges 
E' equals E. Note that if II is an isomorphism of ^ then if (/, 
/) € E also (Il(i), n(/)) G E. A graph isomorphism of order 2 
is an isomorphism where 11(11(0) = i (i-e., either 11(0 — ', or, 
11(0 =j and Tl(J) = /). For example, the 12 isomorphisms of 
order 2 of the graph ff shown in Figure 3a are listed in Table 
1. 

Thus, by replacing every point with its permuted point of 
isomorphism (0, for example, we obtain the graph ff (Figure 
3b), which is topologically equivalent to graph & 

Graph isomorphism is a widely studied area (see refs 37 and 
38 for a review) and has many theoretical results. There are 
several ways to find all graph isomorphisms of order 2,38 but 
we use a simple recursive algorithm that we have developed.39 

2.4. Further Comments on the Folding/Unfolding Pro­
cedure. We recall that the general definition of S' (eq 1) 
requires minimization of the P, — P1 distances and that, 
according to our procedure, the P,'s are obtained at the unfolding 
stage (section 2.1, Figure lc—f). However, for the case of S(a), 
the problem can be reformulated so that only the folded points 
are considered. Let us demonstrate it on the pair of points Pi 
and P2 in Figure 4. We show that ||Pi - PiI]2 +UPj- P2||2 

can be expressed in terms of the folded points Pi and P2 (Figure 
4): since P] = Pi, the term Pi — Pi can be replaced by P] — 
Pi, and since P2 is a reflection of P2 and P2 is a reflection of 
Pi, the term 11P2 - P211 can be replaced byJ | P2 - Pi 11 to obtain 
IIPi - Pill2 + l|P2 - Pill2- Next, since Pi is the center point 
(average) of Pi and P2, we have ||Pi - Pi || = ||P2 - Pi || = 
V2||Pi - P 2 | | . Therefore 

HP1 - P1Ii2 + I I P 2 - P2Ii2 = 2(V2HP1 - P2Ii)2 = 

V 2 I I P 1 - P 2 I I2 = V 2 I I P 1 - P 2 I I2 (3) 

By denoting by Pi the reflection of Pi and by noting that P2 is 
the reflection of P2, we have that the last term of eq 3 is equal 
1 O V 2 I I P 1 - P 2 I P = V 2 I I P I - P 2 I P . 

(37) Even, S. Graph Algorithms; Computer Science Press: Potomac, MD, 
1979. 

(38) Hoffman, C. M. Group Theoretic Algorithms and Graph Isomor­
phism; Springer-Verlag: New York, 1982. 

mirror axis 

Figure 4.. Conversion of ||Pi - Pi | |2 + \\Pi - P2II2 to V2||Pi - P2II2 

or to 1I1WPi - P2II2. See text (section 2.4). 

• 0 • 0
P ' 

» 0 * • 

ho op> 

a. b . c. 
Figure 5. (a) Pairing of the four points is, for instance, {Pi, Pi], {P2, 
PA}, {Pi, P}}. (b) Reflected points P1. (c) Minimal distance between 
the original and reflected sets of points. 

Thus, in order to minimize the distances between Pi and Pi 
and between P2 and P2 (over all orientations of a), one may 
minimize V2||Pi — P2||2 or minimize V2||Pi — P2||2. Equiva-
lently, one can minimize 

1 1 ^ 1 - P 2 I I 2 + H P 1 - P 2 I I2 (4) 

over all orientations of a. The meaning of eq 4 is that all points 
are reflected, and the sum of distances between all reflected 
points and their matching unreflected points is minimized. 
Suppose, for instance, that the pairing of the four points in Figure 
5a is {Pi, Pi}, (P2, P4), (P3, P3}. The points are reflected 
into Pi (Figure 5b), and the sum ||Pi - P1H

2 + ||P2 - P4||2 + 
IIP3 — P3II2 + IIP4 — P2II2 is minimized over all reflections 
and rotations of the set P1-. The best arrangement is shown in 
Figure 5c. 

Once the optimal rotation and translation is found, the final 
P,'s are obtained by averaging each point P, with its matching 
reflected point. Given two sets of points and given a matching 
between points of the two sets, the problem of finding the 
optimal rotation and translation which minimizes the sum of 
squared distances between the corresponding points is a classic 
problem of pose estimation.40 Several methods have been 
suggested to solve this problem analytically.41 We follow the 
method of Arun et al.,41a which is summarized in the Appendix. 
Note that compared with the "best overlap" methods,7-13 which 
give weight to the volume of the object, our methodology 
concentrates on the envelope of the chiral object. It is this 
envelope which carries much of the information on chirality 
and to a lesser degree the encompassed volume. 

2.5. Improper Axes of Rotation. A set of points is achiral 
if it has any Sn symmetry. However, for odd n, Sn is equivalent 

(39) Zabrodsky, H. Thesis, The Hebrew University, 1993. The isomor­
phism algorithm which we implemented is a recursive algorithm that uses 
a depth-first search for permutations. Thus, a node is tested for a possible 
match with every other node in the given graph, and if a match is found, 
men all other nodes are matched. Testing if two nodes can be matched is 
performed by calculating the equality of the valency of the two nodes and 
the matching of neighbors. 

(40) Horn, B. Robot Vision; MIT Press: Cambridge, MA, 1987. 
(41) (a) Arun, K. S.; Huang, T. S.; Blostein, S. D. IEEE Pattern Anal. 

Mach. Intell. 1987, P (5), 698. (b) Horn, B. K. P.; Hilden, H. M.; 
Negahdaripour, S. J. Opt. Soc. Am. 1988, 5 (7), 1127. 
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Table 1. All Possible Isomorphic Configurations of Order 2 of the Branched Structure Shown in Figure 3a 

a 
b 
c 
d 
e 
f 
g 
h 
i 

J 
k 
1 

M 

a. 

Tl(P1) 

Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 

\ 

P^2 
K^ 

Tl(P2) 

Pi 
Pi 
Pi 
Pi 
P^ 
P^ 
Pi 
Pi 
PA 

PA 

Pt 
Pi 

^ 

Tl(P3) 

Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
PA 

PA 

JS 

I <• 
b 

Tl(P4) 

PA 

PA 

Pi 
Pi 
PA 

PA 

Pi 
Pi 
Pi 
Pi 
Pi 
Pi 

pJU_ 
JrS^ 
°p, 

Tl(Pi) 

Pi 
Pi 
PA 

PA 

Pi 
Pi 
PA 

PA 

PI 

Pi 
Pi 
Pi 

i \ / C 
! > 

i 

Tl(P6) 

P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 

Tl(Pi) 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Pi 
P6 

Tl(Pi) 

Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
Pi 
P9 

P9 

P9 

P9 

6. Unfold each 
in step 4 
obtained. 

Tl(P9) 

P9 

P9 

P9 

P9 

P9 

P9 

P9 

P9 

Pi 
Pi 
Pi 
Pi 

n(Pio) 

PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 
PlO 

n ( P n ) 

Pu 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 

average point P, by applying E' 

Tl(PiI) 

Pn 
Pu 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 
Pn 

-\ S 2 - ' . . as 
on the averaged point. The unfolded points Pj are 
Thus, P i is the identity applied to P i , 

obtained by applying a it backward rotation—inver 
P i , point P5 is obtained by applying a backward pre 
of Ti to point P 2 , and so on (Figure 6d). 

point Ps is 
sion to point 

>per rotation 
The points P,- are S2n 

^M 
Figure 6. Steps of determining the continuous chirality measure with 
respect to an improper axis of rotation (52 = i, in this case). See section 
2.5 for details. 

to Cnh and therefore includes S\. Thus the CCM of a structure 
is found by finding the closest structure having Si or S2n 

symmetry. The above described procedure for Si = a can be 
straightforwardly extended to find the closest S2n-symmetric 
configuration for any n. Here the points are divided into sets 
having either In ordered points, two points, or a single point 
(in the last two cases, the points will lie in the symmetrized 
object, on the improper rotation axis, or at its intersection with 
the plane, respectively). The folding and unfolding are per­
formed by applying rotation—reflection rather than reflection. 

The procedure for S2n is thus as follows (Figure 6, demon­
strated for S2): 

1. Normalize the configuration, as in step 1 in section 2.2. 
2. Select an improper rotation axis passing through the origin 

(Figure 6a). 
3. Select a Division of the points into ordered sets (a 

permutation of the points) where each set contains either In 
points, two points, or a single point (in our example, the first 
two cases are equivalent). If a set contains a single point, that 
point is multiplied 2« times. If the set contains two points, 
each of the two points is multiplied n times. For example, in 
Figure 6a, a possible division with respect to S2 is the 
following: {Pi, P8), (P2, P5], {Pi, P6), {PA, P7), {P9, P9). 

4. Fold each of the sets of points by applying an element 
from the ordered set of elements, E, S2n, S2n, ..., to each point 
in the ordered set. Except for the case {E, S2), an ordering of 
elements must be selected here. For the example in Figure 6b, 
the identity transformation is applied to points Pi, P2, P3, P4, 
and Pg, and a n rotation—inversion is applied to points P%, P5, 
Pd, Pi, and Pg. The folded points P, are obtained (Figure 6b). 

5. Average each set of folded points, obtaining a single 
averaged point P, for each set In the example of Figure 6, the 
averaged points obtained are P\, P2, P3, Pu, and P9 (Figure 6c). 

symmetric. 
7. Calculate S(S2n) according to eqs 1 and 2. 
8. Minimize the chirality value obtained in step 7 by 

repeating steps 2—6 with all possible divisions of points into 
sets and for all possible improper-rotation axes. 

As in the mirror-symmetry case, the division of points into 
sets is greatly simplified when the configuration of points is 
connected (or partially connected). In the case of S2, the 
topological stage as described in section 2.3 is applicable, since 
both the mirror-symmetry group and the inversion-symmetry 
group have two elements and the possible divisions into sets 
reduce to finding isomorphisms of order 2 (see section 2.3). In 
all other cases of S2n symmetry, the topological stage as 
described in section 2.3 is applicable with slight modifications: 
the topological stage finds all isomorphisms of order In of the 
given graph. This is performed by relieving the restriction that 
match(i) = j *•» match(j) = i (which is equivalent to the 
restriction match(match(i)) = i). 

3. Further Properties of the Continuous Chirality 
Measure 

3.1. Maximal Chirality Values and the Most Chiral 
Objects. The upper bound of S' (eq 1), namely 1.0, is attained 
in cases where the nearest symmetric object requires all of the 
Pi vertices to move the maximal distance of 1 toward P; (recall 
the normalization step, section 2.2). This condition is fulfilled, 
for instance, if one asks how much C7-ness exists in a perfect 
hexagon (not allowing any addition of vertices): since the object 
nearest to a hexagon and having C7 symmetry is a single point 
located at the centroid of the hexagon, one obtains for the 
hexagon S(C7) =1.0 (for an additional example, see Figure 18 
in ref 2). 

By the same token, if one imposes the determination of the 
chirality of a perfect hexagon with respect to S% symmetry rather 
than with respect to the obvious Si = 0 element, then again the 
nearest Ss-achiral object is the centroid with S(Sg) = 1.0. In 
the majority of cases, however, the nearest achiral object 
possesses a a element, and with such objects, the maximal value 
of 1 is not reached: the maximal distance moved in this case 
by the set of P1's is not the collapse to the centroid but the 
distance to P,'s located on the reflection line (2D) or plane (3D). 
Thus, since Ll |P; - P,(centroid)||2 > LlIPi - P,(plane)||2, one 
has that S'(CT) < 1. Figure 7 shows one such case where the 
nearest achiral object is the original configuration collapsed to 
a reflection line. 
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Figure 7. Achiral object nearest to the spiral (a) coincides with the 
nearest mirror axis (b). The CCM value for this spiral is 8.83. 

(0,1), 

/ 
(-*,-y-l) . 

i 
-i 

Figure 8. Parametrization of the space of all triangles in 2D (a) giving 
the most chiral triangle (b) and the nearest achiral triangle (c). 

Next, we evaluate the maximal chirality value of the classical 
Pythagorean tetraktys,*2 namely, one point, two points—a line, 
three points—a triangle, and four points—a tetrahedron. The 
chirality of the first two cases is zero for obvious reasons (and 
we note that this value is obtained by following the protocol of 
our procedure as well). For the evaluation of the maximal 
chirality of the triangle, we employ a search program as 
follows: We denote the three vertices as (0.0, 1.0), (x, y), and 
(—x, —1.0 —y). The sum of coordinates is zero, and thus the 
centroid is at the origin (0.0, 0.0) (Figure 8a). Following step 
1 in section 2.2, the values of x and y are taken so that no vertex 
is outside the unit circle. A rigorous search is performed by 
densely sampling the x and y values in the range [—1...1] and 
verifying that no vertex is outside the unit circle. The CCM is 
evaluated for every sampling, and thoes values of x and y which 
maximize the CCM value are found. We find that the CCM is 
maximized when x = 0.220 183 and y = -0.719 058, repre­
senting a triangle with vertex coordinates (0.0, 1.0), (0.220 183, 
-0.719 058), and (-0.220 183, -0.280 942). Thus, the most 
chiral triangle, a scalene, has an edge (sine of angle) ratio of 
1:0.75:0.36 and its CCM value is Smax(cr) = 0.0303; it is 
shown in Figure 8b. Figure 8c shows the closest achiral triangle 
to the most chiral one (an isoscele triangle). In a previous 
report,2 we evaluated the S (C3) of a triangle and obtained 
V3. The result Smax(a) < S1113x(C3) is expected: it reflects the 
situation that, in order to attain a C3 configuration, one has to 
search for near specific points, whereas in order to attain 
achirality one has to search for the shortest distance to a 
reflection line. Hence also the rather small value of Smax(<7). 

The search for the most chiral tetrahedron (3D simplex) is 
carried out similarly: We denote the vertices as (0.0, 0.0, 1.0), 
(xu 0.0, zi), (x2, y2, Z2) and (-X1 -X2, -y2, -1 .0 -z\ -zi), which 
places the centroid at the origin (0.0, 0.0, 0.0) (Figure 9a). As 
in the triangle case, a rigorous search is performed by densely 
sampling the range [—1...1] for the maximal values of x\, zi, 
x2, y2, and z2. For every set of parameter values, the points of 
the tetrahedron are verified to be in the unit sphere and the CCM 
value is evaluated. We find that the CCM is maximized when 
X1 = 0.394 532, z\ = 0.252 185, x2 = -0.136 945, y2 = 
-0.298 958, and z2 = -0.333 343, representing a tetrahedron 
with vertex coordinates (0.0, 0.0, 1.0), (0.395, 0.0, 0.252), 
(-0.137, 0.299, -0.333), and (-0.258, -0.299, -0.919). Thus, 
the most chiral tetrahedron has an edge ratio of 1:1:1:1.6:1.6: 

Zabrodsky and Avnir 

Figure 9. Parametrization of the space of all tetrahedra (a) giving the 
most chiral tetrahedron, (b) Ci simplex (the Ci axis is the dashed line 
bisecting the edges 14 and 23). (c) Closest achiral configuration: the 
tetrahedron collapsed to a plane (shown as coinciding with the plane 
of this page). 

2.3, and for each of its four constructing triangles, the ratios 
are 1:1:1.6, 1:1:1.6, 1:1.6:2.3, and 1:1.6:2.3. Its CCM value is 
Smax(<7) = 0.041, and it is shown in Figure 9b. Very interest­
ingly, the most chiral tetrahedron is perfectly C2 symmetric (the 
C2 axis bisects the edges 14 and 23). Unlike the case of the 
triangle, the closest achiral structure is collapsed to a plane 
(Figure 9c). 

For the maximal chirality of ethane rotamers, see section 4.2 
(c.f. ref 13c). See also Gilat and Gordon, who recently obtained 
the theoretical upper bounds for their chiral coefficients of 
convex sets:43 0.3954 and 0.6977 for 2D and 3D, respectively. 
Buda's result for maximal chirality of a triangle123 is 
paradoxical.12b See also ref 23 for an application of Rassat's 
approach22 to the question of maximal tetrahedral chirality. 

3.2. Some Comments on Chirality Assessment of Physical 
Properties: The Chirality of Equiproperty Contours. It is 
in order to reiterate here that the CCM analysis as described so 
far has dealt purely with shape.4* Thus, the most chiral 
tetrahedron obtained above refers to vertex coordinates only. 
While this is directly applicable to, say, vibrational distortions 
of CX4, the question arises as to how one can approach chirality 
issues of molecules for which chirality is initially linked with 
different atoms (CWXYZ)P 

We suggest that, since virtually all chemical properties and 
many of the molecular physical properties are determined by 
the (frontier) orbitals and by the ensuing molecular charge 
distributions, equiproperty contours unify the representation of 
heteronuclear molecules into a homogeneous continuous rep­
resentation, on which the CCM can then be applied. Thus, 
although F and Cl cannot be symmetrized, charge density 
distributions induced by these atoms can. To implement this 
solution one has, therefore, to extend the CCM analysis to 
continuous surfaces or contour lines.4'21 This is performed by 
representing the contour as a string of equally spaced points 
(as dense as one wishes) and then performing the CCM folding/ 
unfolding procedure on the dense polygon as described in 
section 2.2. As a preliminary example of how this is done, we 
evaluate the chirality of the contours of the lone-pair orbital of 
a distorted water molecule (perhaps a frozen moment of a 
vibration, or a water molecule in a matrix of amorphous ice, or 
a water molecule trapped in a micropore) as shown in Figure 
10. The ratio of lengths of the two O—H bonds is 0.9 (instead 

(42) Atkins, P. W. Creation Revisited; W. H. Freeman: Oxford, 1992; 
Chapter 5. 

(43) Gilat, G.; Gordon, Y. J. Math. Chem., in press. 
(44) Gilat, G. J. Math. Chem. 1994, 15, 197. 
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Figure 10. Two equiamplitude contours of the wave function of the 
lone-pair orbital of a distorted water molecule.45 The two contours 
are spaced by 0.05 bohr~3'2, and the value of the outer one is 0.576 
bohr~M. S(a) values are indicated in the figure. The CCM value for 
the next inner contour (not shown) is 0.248. 

of 1.0), and the H - O - H angle is 104°.45 Each of the two 
shown contours is represented as a string of about 200 points, 
and the CCM with respect to mirror symmetry is evaluated. It 
is seen quantitatively (Figure 10) that the distortive effects of 
the unequal bonds fade away from the inner to the outer 
contours. 

It is also in order to recall here that our method evaluates the 
CCM by identifying the minimal distances, regardless of 
whether motion along the shortest-distance line is possible 
physically. S(G) values which are not minimal, but those which 
correspond to physical pathways of symmetrization are of great 
interest by themselves. We leave for the moment further 
extensions of these comments and return to the main theme of 
this report, namely pure shape chirality of collections of 
connected vertices. 

3.3. Continous Change in Chirality along Enantiomer-
ization Pathways. Given a pair of enantiomers, one can 
racemize from one to the other by various routes. Standard 
intuition would, perhaps, dictate that, at a certain point along 
the racemization pathway, an achiral intermediate should be 
encountered, namely a structure with S(Gachiiai) = 0, where left 
changes to right. Remarkably, this, by and large, need not be 
the case: the transition from left to right can take such a pathway 
that never passes through S(GaChirai) = 0.6,13c'26 An example is 
shown in Figure 11 for the racemization pathway 1. It is seen 
in the CCM analysis of this racemization pathway (Figure 1 lb) 
that the S value does not reach zero at any point. One must 
conclude that somewhere along this pathway there exists a 
structure that is neither left nor right and yet is chiral. Its 
location is intimately linked to the specific definition of left-

(45) The contours were computed as Slater-type orbitals, represented by 
three Gaussian functions (STO-3G) using the GAMESS (General Atomic 
and Molecular Electronic Structure System) program (Schmidt, M. W.; 
Baldridge, K. K.; Boaz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; 
Nguyen, K. A.; Windus, T. L.; Elbert, S. T. Quantum Chem. Program 
Exchange Bulletin 1990,10, 52.), by Dr. David Danovich and Prof. Sasson 
Shaik. 
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Racemization Coordinate 

Figure 11. (a) Chiral (1) and achiral (2) racemization pathways, (b) 
Continuous chirality measure of the two pathways. The racemization 
coordinate is proportional to the sum of angle changes. Pathway 1 
never drops to S(Gachirai) = 0. 

and right-handedness. A detailed analysis of this most interest­
ing phenomenon and of the tentativeness of the very concept 
of left/right is provided in a subsequent report. (It is this 
tentativeness which prompts us not to assign left-handedness 
or right-handedness to the chiral objects in this report whenever 
such assignment is not needed for the discussion). 

3.4. Chirality of a Set of Vertices with Uncertain Loca­
tions. Information obtained from any analytical instrument has 
a certain degree of uncertainty of both inherent and experimental 
origin. In X-ray crystallographic analysis, for instance, the 
uncertainty in the location of atoms as obtained by diffraction 
is due to crystal imperfections, thermal motion, etc.46 We 
address ourselves now to this problem,4 focusing on chirality. 

Quite often the data is given as a collection of probability 
distribution functions of point locations. Given points with such 
uncertain locations, the following questions are of interest: 

What is the most probable closest achiral shape represented 
by the data? 

What is the probability distribution of the chirality measure 
values for the given data? 

Let us begin our discussion with the first of these questions. 
Figure 12a shows a configuration of two measurements Qi and 
Qi whose locations are given by Gaussian (normal) distribution 
functions. The dot represents the expected location Pj of the 
point, and the width and length of the rectangle are proportional 
to the standard deviation as expressed by a covariance matrix 
A,-, i.e. Qi ~ yV(P,-,A,), where ;' = 1,2. We aim at finding the 
mirror-symmetric configuration of points at locations {̂ ,}f=i 
which is optimal under the maximum likelihood criterion,47 

which searches for the best set of {Pi} values for which the 
given measurements Qt are most likely. 

Denote by co the centeroid of the most probable mirror-
symmetric set of locations P1: co = 1^(Fi + Pz)- The point co 
is dependent on the location of the measurements (Pi) and on 
the probability distribution associated with them (A1). Intu­
itively, co is positioned at the point about which the folding 
(described below) gives the tighest cluster of points with small 
uncertainty (small standard deviation). We assume for the 
moment that the centroid co is given. A method for finding co 
is included in the detailed derivation of this method in ref 4. 

(46) Stout, G. H.; Jensen, L. H. X-Ray Structure Determination, 2nd ed.; 
Wiley: New York, 1989. 

(47) DeGroot, M. H. Probability and Statistics; Addison-Wesley: Read­
ing, MA, 1975. 
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Figure 12. Folding/unfolding procedure applied on two uncertain 
locations Q\ and Qi. (a) original data; (b) folding; (c) averaging; and 
(d) unfolding—a CT-symmetric pair is obtained. Compare with Figure 
lc-f. 
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Figure 13. (a) Configuration of six measurement points Qu •-, Qi. 
(b) Measurements {<2,}f=i divided into three pairs of measurements 
({Qu Qe], [Qi, Qs], [Qi, QA]). The folding is applied seperately to 
each pair to obtain the measurements [Q1) i=i. Averaging and unfold­
ing are then carried out as in Figure 12. 

Given the angle 6 of the reflection axis, we use the following 
variant of the folding method (section 2.2): 

1. The two measurements Qt ~ Jv(PuAi) are folded by 
reflecting one of the measurements (Q2) about the reflection 
axis and leaving the other measurement (Qi) as is. A new set 
of measurements Q1 ~ MPuK1) is thus obtained (Figure 12b). 

2. The folded measurements are averaged using a weighted 
average based on the distribution of the measurement, and a 
single point Pi is obtained (Figure 12c). Averaging is performed 
by considering the two folded measurements Q\ and Q2 as two 
measurements of a single point, and P\ represents the most 
probable location of that point under the maximum likelihood 
criterion. 

P1-W = ( A r 1 + A r 1 ) - 1 ^ 1 ^ , ; - i O)) + A2 '(P2 - a))) 

3. The average point Pi is unfolded as described in section 
2.2 to obtain points {Pj}?=1 which are perfectly mirror sym­
metric with respect to the mirro axis passing through a/ at an 
angle 6 (Figure 12d). 

When m = 2q measurements are given, the m measurements 
{Qi]7=i are divided into q pairs of measurements and the 
folding method as described above (Figure 13) is applied 
seperately to each pair of measurements, following the general 
procedure of section 2.2. Derivations and proof of this case 
are also found in ref 4. Several examples are shown in Figure 
14, where for a given set of measurements the most probable 
mirror-symmetric shapes were found. 

d. 
Figure 14. Examples of configurations of six mesaurements (dashed 
lines) given by a normal distribution function (marked as rectangles 
having width and length proportional to the standard deviation) and 
the most probable a-symmetric shapes (solid lines). 
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Chirality Measure 
Figure 15. Probability distributions of the chirality measure, given 
for the sets of measurements in Figure 14a—d. (In this example the 
reflection line (the y-axis) and the pairing were predetermined.) 
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Figure 16. Application of the CCM to diastereomers. 

Next, let us treat the second general question, namely, the 
probability distribution of chirality values. Consider again the 
configurations of 2D measurements given in Figure 14, where 
each measurement Qt is a normal probability distribution Qt ~ 
JV(PuAi). The probability distribution of the chirality values 
of the original measurements is equivalent to the probability 
distribution of the location of the average point given the folded 
measurements as obtained in steps 1 and 2 of the algorithm. It 
is shown in ref 4 that this probability distribution is a %2 

distribution. In Figure 15, we display distributions of the 
chirality value for the various measurements of Figure 14. As 
expected, the distribution of chirality values becomes broader 
as the uncertainties (the variance of the distribution) of the 
measurements increase. 

3.5. Additional Chirality-Related Stereochemical Meas­
ures: Diastereomerism and Prochirality. The general ap­
proach of continuity can be extended to other stereochemical 
concepts as well. Here we comment on two chirality-related 
concepts, distereomerism and prochirality.48 Consider the 2D 
diastereomeric pairs in Figure 16 with the two chiral centers at 
positions 1 and 2: RiR2, SiS2 (2D-threo) and RiS2, R2Si (2D-
erythro) (here we follow the notation in ref 33). 

The chirality content of the threo pair must be different than 
that of the erythro pair (it is S(cr) = 2.45 and 3.16, respectively). 
We can then define DE = ||S(a)i - S(CT)2||, where DE is the 

(48) Halevi, E. I. J. Chem. Res. Synop. 1985, 206. 
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diastereometric excess and S(a)i and S(CT)2 are the CCM values 
of the diastereomers. Its bounds are 0 < DE < 100. For the 
pair in Figure 16, DE = 0.71. Note that the distance from one 
enantiomer to each of the two diastereomeric enantiomers is 
not equal: the ground for comparison between the two pairs is 
the minimal distance to chirality. Note also that, for the case 
of a meso vs an RS pair, DE = S (because of the achirality of 
the former). Similarly, various possible mutual alignments in 
diastereomeric interactions between chiral species can be 
quantified continuously from the point of view of the chirality 
content of the complex. 

For diastereometric pairs, and actually for molecules contain­
ing more than two chiral centers, one may wish to analyze the 
chirality of each of the centers. A natural way to do so would 
be to replace the substituents on the chiral center with the 
centroids of each of the substituents. Thus, the chirality of 
center 1 in Figure 16 would be calculated using two substituents, 
3 and the centroid of 4, 2, 5 (=2'), and the chirality of center 
2 using the three substituents 4, 5, and the centroid of 1, 3 (=1')-
We obtain for center 1, S(<J) = 3.37, and for center 2, S(a) = 
0.285, a difference which agrees with intuition. 

Finally, we comment on prochiral molecules, namely, achiral 
molecules which carry enantiotopic atoms or groups. Following 
the theme of this report, the degree of prochirality can also be 
analyzed as a continuous property.48 One can evaluate it either 
by replacing an enantiotopic group with other groups or by 
analyzing the shape distortion exerted on the prochiral moleucle, 
when placed in a chiral environment. We likewise notice that 
stereotopism and homotopism (exchange by a Cn operation) are 
open to be analyzed on a continuous scale as well, following 
the CCM and CSM procedures. 

4. A Compendium of Chiral Structures and Their 
Chirality Measures 

The CCM method can be easily applied to virtually any chiral 
molecule, structure, or process. We regard this property of our 
approach as an important advantage of it. The purpose of this 
section is to demonstrate the versatility of the tool we developed. 
Needless to say, a next stage in such an investigation is to 
identify correlations between the CCM values of molecules and 
measurable physical and chemical properties; indeed our current 
research focuses on such issues in several of the following 
examples. 

4.1. Static Structures. 
Phosphates: Following the thema of this work, we recall 

the finding that practically all phosphates are not tetrahedral in 
their crystalline state,49 a problem dealt with by Dunitz et al.50 

(The tetrahedricity of one such distorted phosphate was evalu­
ated in ref 3.) It follows that, unless the tetrahedral distortion 
is symmetric itself (for instance, one of the vertices is pulled 
out into a C^ tetrahedron), phosphates are, by and large, chiral. 
Table 2 collects the CSM and CCM analysis of a number of 
phosphates from a compilation of phosphate coordinates.49 

Measures of tetrahedricity, C3V-ness, and chirality are shown. 
Notice that S(Td) values are typically larger than S(C3V) values, 
which in turn are larger than the chirality S(a) values. This is 
a reflection of the fact that Cs is a subgroup of Csv, which is a 
subgroup of Td\ that is, it is "easier" for the distorted tetrahedron 
to "find" a nearby reflection plane (in order to attain achirality) 
than to shift all vertices to a perfect tetrahedron position. Note 
that none of the measured S(a) values exceed the Smax(<7) of a 
tetrahedron (4.054) evaluated in section 3.1. 

(49) Baur, H. W. Acta Crystallogr. 1974, B30, 1195. 
(50) Murray-Rust, P.; Biirgi, H. B.; Dunitz, J. D. Acta Crystallogr. 1978, 

B34, 1787. 
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Table 2. Symmetry and Chirality Measurs of Phosphates 

compd0 Td d, a 

" The numbers in parentheses refer to Baur's numbering (Table 16 
in ref 49). More than one entry per compound refers to distinctly 
different phosphate moieties in the crystal.49 

Figure 17. Chiral fullerene having 28 carbon atoms and its closest 
achiral configuration. (a,c) Fullerene from two viewpoints. (b,d) 
Closest chiral configuration from the same viewpoints. Due to the 
connectivity restriction, the closest achiral structure is the original 
fullerene collapsed onto the symmetry plane. 

Fullerenes: Some members of this fascinating group of 

molecules are chiral51 (and an enantiomeric resolution was 

achieved recently52). Our method is capable of evaluating the 

degree of chirality of these molecules. As an example, let us 

take the C28 fullerene shown in Figure 17a,b. The symmetry 

of this fullerene is Di (achiral point group), and it is one of 

two topologically distinct C28 cages (the other being of Tj 

symmetry).5 3 The nearest achiral structure of the Di isomer, 

which obeys our crucial restriction of preservation of topology, 

(51)Manolopoulos, D. E., Fowler, P. W. / . Chem. Phys. 1992, 96, 
7603. 

(52) Hawkins, J. M.; Meyer, A. Science 1993, 260, 1918. 
(53) Fowler, P. W.; Baker, J. J. Chem. Soc, Perkin Trans. 2 1992, 1665. 

Fowler, P. W.; Manolopolous, D. E.; Redmond, D. B.; Ryan, R. P. Chem. 
Phys. Lett. 1993, 202, 371. 
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CH3COOH-H3PO4 (61) 
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Figure 18. Structures of hexahelicene (a) and undecahelicene (b), as 
obtained from crystallographic data. 
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Figure 19. Some topological structures which give rise to chirality: 
(a) Mobius strip and (b) its' nearest achiral structure; (c) a tilted catenane 
(the two planes are tilted at 25.6° to each other); and (d) a knot. Their 
CCM values are respectively 1.9470, 0.4113, and 0.5299. 

is the planar collapsed network shown in Figure 17c,d. The 
chirality measure of the D-JCn, fullerene is 24.943. 

Helicenes: Helical compounds from the smallest twisted 
molecules up to DNA comprise a major class of chirality in 
chemistry.54 A well-studied group of molecules in this class 
are the helicenes.55 The CCM approach is capable of evaluating 
the chirality content of this type of molecules as well. Figure 
18 shows the structure of hexahelicene and undecahelicene, as 
obtained from crystallographic data.56 The chirality values of 
these two molecules are 5.645 and 10.154, respectively: the 
larger helicene is more chiral than the smaller one.57 

Knots, Mobius Strips, and Catenanes: We continue to 
demonstrate the versatility of the CCM approach on other 
topological distinct structures which give rise to chirality, 
namely, knots, Mobius strips, and substituted catenanes.26'27 

Examples of these structures are shown in Figure 19 along with 
their chirality values. For the knot and the tilted catenane, the 
nearest achiral structure is planar (or, if one prefers, infinite 
simally close to a plane). For the Mobius strip, the nearest 
achiral structure collapses the twist to a point (Figure 19b). 

Large Random Objects: Another family of objects for 
which chirality analysis is not trivial are the large (random) 
objects. Figure 20a shows a chiral diffusion-limited aggregate 
(DLA).58,59 We commented already on some basic conceptual 
difficulties in the application of the standard terms "symmetry" 
and "chirality" to such objects3 and will expand on it later. Here, 
however, we show that the CCM tool is capable of dealing with 
such complex structures as well. For DLA's, all points are 
contour points,58 and therefore, a contour analysis2'3 can be 
applied here, which simplifies the calculations. The chirality 
measure of the DLA in Figure 20a is 3.40. The nearest chiral 

(54) Meurer, K. P.; Vogtle, F. Top. Curr. Chem. 1985, 127, 1. 
(55) Martin, R. H. Angew. Chem., Int. Ed. Engl. 1974, 10, 649. 
(56) Cambridge Structural Database. For a description, see: Allen, F. 

H.; et al. Acta Crystallogr. 1979, B35, 2331. 
(57) For a detailed analysis of these structures, along with correlations 

between S(CT) and physical properties, see Zabrodsky, H.; Kaftori, M.; 
Edelstein, J.; Avnir, D. Manuscript in preparation. 

(58) Meakin, P. Heterog. Chem. Rev. 1994, 1, 99. Meakin, P. In The 
Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Poly­
mers; Avnir, D., Ed.; Wiley: Chichester, U.K., 1992 (3rd corrected printing); 
Chapter 3.1.2. 

(59) Nagatani, T.; Sagues, F. J. Phys. Soc. Jpn. 1990, 59, 3447. 

a. w ^H" b. 
Figure 20. (a) Chiral dirrusion-limited aggregate (DLA). (b) Nearest 
achiral figure. The chirality measure of the DLA in a is 3.40. 
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Figure 21. Chirality changes during a Walden-type inversion, (a) 
Three arms marked P%, P3, and PA moving with random phase shifts 
(of 2/32, 3/32, and 6/32 of the cycle), (b) Chirality measure during a 
single inversion. 

structure is shown in Figure 20b. For actual experimental 
examples of chiral growth phenomena, see for instance ref 60. 

4.2. Dynamic Chirality Changes: Fluxional Molecules, 
Vibrations, Rotations, and Concerted Reactions. Given a 
sufficiently fast camera, one can follow the continuous changes 
in the symmetry of any dynamic process. In parts 2 and 3, we 
demonstrated it for a fluxional, Walden-type flip-flopping,3 for 
vibrating CX4,3 and for rotating ethane3'4 and analyzed the 
continuous changes in the relevant symmetry groups. If the 
dynamic process removes an improper element of symmetry 
from the molecule, it becomes chiral. Actually, as we show 
now, these systems are chiral during most of the dynamic 
process. Coming back to some of the examples of parts 2 and 
3, we first perform a Walden inversion so that the movements 
of P2, Pi, and P4 are phase shifted (see Figure 21a and details 
in the caption). Note that the chirality is retained almost 
throughout the cycle (Figure 21b). Likewise, in our second 
example of rotating ethane (Figure 22a),4 chirality (D3) is 
retained most of the time (Figure 22b).13c Note that the rotamers 
with maximal chirality during the cycle appear at 30° + «60°; 
earlier we proposed to term these maximal chirality rotamers 
as chiramers.3'4 Finally, we emphasize that structural changes 
along the pathway of any reaction may exhibit varying chirality 
through most of the process. Consider, for instance, the 
intermolecular approach of the Diels—Alder reaction between, 
say, 1,3-butadiene and propene, or a [2 + 2] reaction between 

(60) McConnel, M. H. Annu. Rev. Phys. Chem. 1991, 42, 171. 
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Figure 22. Changes in chirality of a rotating ethane structure (a) are 
shown (b). On a time scale shorter than the rate of rotation, ethane is 
chiral. 

two differently substituted ethylenes not ideally aligned,61 or a 
disrotatory ring opening in which the rotating ends are not 
exactly in phase, etc. In all of these concerted reactions, the 
intermediate reacting system is chiral, its degree of chirality 
changes throughout the process, and the CCM approach is 
capable of quantifying it as a novel reaction coordinate. 
Research in this direction is in progress in our research group. 

5. Conclusion 

We have presented a versatile general tool for quantifying 
shape chirality as a continuous structural property. This report 
was devoted to a detailed exposition of the method for both 
simple and more complicated cases. The general behavior of 
the chirality measure was analyzed for various shapes and 
structures, for limiting cases, and for contininous structural 
changes. Returning to the thema of our work, we hope we were 
able to convince the reader that chirality should be considered 

(61) Halevi, E. A. Orbital Symmetry and Reaction Mechanism — The 
OCAMS View; Springer: Berlin, 1992; Chapter 6. 

(62) Press, W. H.; Teukolsky, S. H.; Vetterling, W. T.; Flannery, B. P. 
Numerical Recipes in C; Cambridge University Press: New York, 1992. 

as a universal structural property (existing even in classical 
"achiral" structures) and that it is up to the detectability limits 
of analytical tools to realize this universality. 

In subsequent reports, we will expand several topics which 
we only briefly touched in this introductory paper (especially 
those outhned in section 4), emphasizing both basic issues of 
the very concept of chirality and correlations between the 
chirality values and other molecular properties. 
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Appendix: Pose Estimation Algorithm 

Given two sets of points {Pj}"=1 and {^}"=i and given a 
correspondence between them (without loss of generality, we 
assume point Pt corresponds to point Pi): 

1. Calculate the centeroids P and P of the two sets. 
2. Translate each set so that its centroid aligns with the origin, 

i.e. Qi = Pi- P and Q1 = P1 - P for i = \...n 
3. Calculate the 3 x 3 matrix H: 

4. Find the singular value decomposition (SVD) of H, i.e. 
find two orthonormal 3 x 3 matrices U and V and find a 
diagonal 3 x 3 matrix W such that H = UWV. (Computational 
algorithms are readily available—see ref 62 for example.) 

5. Calculate the rotation matrix R: 

R=VIf 

The translation T=P-P and the rotation matrix R optimally 
transform points {Pi} such that the sum of squared distances 
between these points and their corresponding point P; is minimal. 
Note that the determinant of R should be one. In some extreme 
cases, this is not so and additional steps are required.413 
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